Wednesday, March 5, 2008

`int_0^1(2pi(3 - y)(1 - y^2))dy` Each integral represents the volume of a solid. Describe the solid.

Take out the constant `2Pi` , and rewrite the integral.



`int_0^1(2 pi (3-y)(1-y^2)dy`


= 2`pi` `int_0^1(3-y)(1-y^2) dy`


`=2pi int_0^1 (3(1-y^2) -y(1-y^2)dy= 2pi int_0^1(3-3y^2-y+y^3)dy`


`=2pi(3y-3y^3/3-y^2/2+y^4/4)|(0,1)`


`2pi(3y-y^3-y^2/2+y^4/4)|(0,1)`


`=2pi(3-1-1/2+1/4 - 0)`


`=2pi(2-1/2+1/4)`


`=2pi((2*4 -2+1)) / 4`


`=2pi(8-1)/4 = 2pi(7/4) = 7pi/2`


Thus the volume of the required solid is 7`pi/2`

No comments:

Post a Comment