`tan(2x)-cot(x)=0`
express in terms of sin and cos,
`sin(2x)/cos(2x)-cos(x)/sin(x)=0`
`(sin(x)sin(2x)-cos(x)cos(2x))/(cos(2x)sin(x))=0`
`sin(x)sin(2x)-cos(x)cos(2x)=0`
`-(cos(x)cos(2x)-sin(x)sin(2x))=0`
using the identity `cosAcosB-sinAsinB=cos(A+B)`
`rArr-cos(x+2x)=0`
`rArrcos(3x)=0`
General solutions for cos(3x)=0 are,
`3x=pi/2+2pin, x=(3pi)/2+2pin`
`x=(4pin+pi)/6 , x=(4pin+3pi)/6`
Solutions for the range `0<=x<=2pi` are,
`x=pi/6,pi/2,(5pi)/6,(7pi)/6,(3pi)/2,(11pi)/6`
No comments:
Post a Comment