Tuesday, April 29, 2008

`tan(2x) - cot(x) = 0` Find the exact solutions of the equation in the interval [0, 2pi).

`tan(2x)-cot(x)=0`


express in terms of sin and cos,


`sin(2x)/cos(2x)-cos(x)/sin(x)=0`


`(sin(x)sin(2x)-cos(x)cos(2x))/(cos(2x)sin(x))=0`


`sin(x)sin(2x)-cos(x)cos(2x)=0`


`-(cos(x)cos(2x)-sin(x)sin(2x))=0`


using the identity `cosAcosB-sinAsinB=cos(A+B)`


`rArr-cos(x+2x)=0`


`rArrcos(3x)=0`


General solutions for cos(3x)=0 are,


`3x=pi/2+2pin, x=(3pi)/2+2pin`


`x=(4pin+pi)/6 , x=(4pin+3pi)/6`


Solutions for the range `0<=x<=2pi`  are,


`x=pi/6,pi/2,(5pi)/6,(7pi)/6,(3pi)/2,(11pi)/6`

No comments:

Post a Comment