Friday, July 24, 2009

`3x - 5y + 5z = 1, 5x - 2y + 3z = 0, 7x - y + 3z = 0` Solve the system of linear equations and check any solutions algebraically.

EQ1:  `3x-5y+5z=1`


EQ2:  `5x-2y+3z=0`


EQ3:  `7x-y+3z=0`


To solve this system of equations, let's use elimination method. In elimination method,  a variable or variables should be eliminated to get the value of the other variable.


Let's eliminate y by multiply EQ3 by -5. Then add it with EQ1.


EQ1: `3x-5y+5z=1`


EQ3: `(7x-y+3z=0)*(-5)`



             `3x-5y+5z=1`


`+`   `-35x+5y-15z=0`


`----------------`


               `-32x - 10z=1`       Let this be EQ4.         


Eliminate y again by multiplying EQ3 by -2. And add it with EQ2.


EQ2: `5x-2y+3z=0`


EQ3: `(7x-y+3z=0)*(-2)`



              `5x - 2y+3z=0`


`+`      `-14x+2y-6z=0`


`----------------`


                   `-9x-3z=0`


                        `3x+z=0`       Let this be EQ5.


Then, consider two new equations.


EQ4:  `-32x-10z=1`


EQ5: `3x + z=0`


Eliminate the z in these two equations by multiplying EQ5 with 10. And,  add them.


     `-32x-10z=1`


`+`     `30x + 10z=0`


`-------------`


                      `-2x=1`


Then, isolate the x.


`(-2x)/(-2)=1/(-2)`


`x=-1/2`


Plug-in this value of x to either EQ4 or EQ5.


EQ5: `3x+z=0`


`3(-1/2)+z=0`


And, solve for z.


`-3/2+z=0`


`-3/2+3/2+z=0+3/2`


`z=3/2`


Then, plug-in the values of x and z to either of the original equations.


EQ3: `7x-y+3z=0`


`7(-1/2)-y+3(3/2)=0`


`-7/2-y+9/2=0`


`1-y=0`


`1-1-y=0-1`


`-y=-1`


`(-y)/(-1)=(-1)/(-1)`


`y=1`


To check, plug-in the values of x, y and z to the three original equations. If the resulting conditions are all true, then, it verifies it is the solution of the given system of equations.


EQ1: `3x-5y+5z=1`


`3(-1/2)-5(1)+5(3/2)=1`


`-3/2-5+15/2=1`


`-3/2-10/2+15/2=1`


`2/2=1`


`1=1`     `:. True`



EQ2: `5x-2y+3z=0`


`5(-1/2)-2(1)+3(3/2)=0`


`-5/2-2+9/2=0`


`-5/2-4/2+9/2=0`


`0/2=0`


`0=0`      `:. True`



EQ3: `7x-y+3z=0`


`7(-1/2)-1+3(3/2)=0`


`-7/2-1+9/2=0`


`-7/2-2/2+9/2=0`


`0/2=0`


`0=0`     `:. True`



Therefore, the solution is   `(-1/2,1,3/2)` .

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...