According to the power reducing formulas, you may re-wrute the expression such that:
`sin^2(2x)*cos^2(2x) = (1 - cos2*(2x))/2*(1 + cos2*(2x))/2`
`sin^2(2x)*cos^2(2x) = ((1 - cos 4x)(1 + cos 4x))/4`
`sin^2(2x)*cos^2(2x) = (1 - cos^2 4x)/4`
`sin^2(2x)*cos^2(2x) = (sin^2 4x)/4`
`sin^2(2x)*cos^2(2x) = ((1 - cos2*(4x))/2)/4`
`sin^2(2x)*cos^2(2x) = (1 - cos 8x)/8`
Hence, eusing the power reducing formulas yields `sin^2(2x)*cos^2(2x) = (1 - cos 8x)/8.`
No comments:
Post a Comment