Given `sin(u)=5/13 , cos(v)=-3/5`
using pythagorean identity,
`sin^2(u)+cos^2(u)=1`
`(5/13)^2+cos^2(u)=1`
`cos^2(u)=1-25/169=(169-25)/169=144/169`
`cos(u)=sqrt(144/169)`
`cos(u)=+-12/13`
since u is in quadrant II ,
`:.cos(u)=-12/13`
`sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-3/5)^2=1`
`sin^2(v)=1-9/25=(25-9)/25=16/25`
`sin(v)=sqrt(16/25)`
`sin(v)=+-4/5`
since v is in quadrant II,
`:.sin(v)=4/5`
Now let's evaluate csc(u-v),
`csc(u-v)=1/sin(u-v)`
`=1/(sin(u)cos(v)-cos(u)sin(v))`
plug in the values of sin(u),cos(v),cos(u) and sin(v),
`=1/((5/13)(-3/5)-(-12/13)(4/5))`
`=1/(-3/13+48/65)`
`=65/33`
No comments:
Post a Comment