Friday, October 29, 2010

`15^@` Find the exact values of the sine, cosine, and tangent of the angle.

You need to find the values of the sine, cosine and tangent of `15^o, ` such that:


`sin 15^o = sin ((30^o)/2) = sqrt((1 - cos 30^o)/2)`


`sin 15^o = sqrt((2 - sqrt 3)/4)`


`sin 15^o = (sqrt(2 - sqrt 3))/2`


`cos 15^o = cos ((30^o)/2) = sqrt((1 + cos 30^o)/2)`


`cos 15^o = (sqrt(2 + sqrt 3))/2`


`tan 15^o = (sin 15^o )/(cos 15^o)`


`tan 15^o = ((sqrt(2 - sqrt 3))/2)/((sqrt(2 + sqrt 3))/2)`


`tan 15^o = ((sqrt(2 - sqrt 3)))/((sqrt(2 + sqrt 3)))`


`tan 15^o = ((sqrt(4 - 3)))/(2 + sqrt 3)`


`tan 15^o = 1/(2 + sqrt 3)`


`tan 15^o = 1/(2 + sqrt 3)`


`tan 15^o = (2 - sqrt 3)/(4-3)`


`tan 15^o = (2 - sqrt 3)`


Hence, evaluating the values of sine, cosine and tangent of `15^o` , yields `sin 15^o = (sqrt(2 - sqrt 3))/2, cos 15^o = (sqrt(2 + sqrt 3))/2, tan 15^o = (2 - sqrt 3).`

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...