Sunday, January 30, 2011

`285^@` Find the exact values of the sine, cosine, and tangent of the angle.

`285^0 = 270^0 + 15^0 `



`sin (270^0 + 15^0) = -cos 15^0 `


                                 `= -cos(45^0 - 30^0) `


                                `= -[cos 45^0 * cos 30^0 + sin 45^0 * sin 30^0]`


                               `= -[1/sqrt2 * sqrt3/2 + 1/sqrt2 * 1/2] `


                                  `=-[(sqrt3 + 1)/(2sqrt2)]`



`cos (270^0 + 15^0) = sin 15^0 `


                                `= sin(45^0 -30^0) `


                                 `= sin45^0 * cos 30^0 - cos 45^0 * sin 30^0 `


                                 `= 1/sqrt2 * sqrt3/2 - 1/sqrt2 *1/2 `



Now `tan(285^0)` . this can be evaluated by using `tan(A+B)` identity or


`tan A = (sin A)/(cos A)`



`tan(285^0) = [sin(285^0)]/[cos(285^0)] `


                   `= -[(sqrt3 + 1)/(2sqrt2)]/[(sqrt3 - 1)/(2sqrt2)] `


                    `=-[(sqrt3 + 1)]/[(sqrt3 - 1)]`


by rationalizing the denominator we get 



`tan(285^0) = -(2+sqrt3) `

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...