Given `sin(u)=-7/25, cos(v)=-4/5`
using pythagorean identity,
`sin^2(u)+cos^2(u)=1`
`(-7/25)^2+cos^2(u)=1`
`cos^2(u)=1-49/625=(625-49)/625=576/625`
`cos(u)=sqrt(576/625)`
`cos(u)=+-24/25`
since u is in quadrant III,
`:.cos(u)=-24/25`
`sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-4/5)^2=1`
`sin^2(v)+16/25=1`
`sin^2(v)=1-16/25=(25-16)/25=9/25`
`sin(v)=sqrt(9/25)`
`sin(v)=+-3/5`
since v is in quadrant III,
`:.sin(v)=-3/5`
Now let's evaluate sec(v-u),
`sec(v-u)=1/cos(v-u)`
`=1/(cos(v)cos(u)+sin(v)sin(u))`
`=1/((-4/5)(-24/25)+(-3/5)(-7/25))`
`=1/(96/125+21/125)`
`=125/117`
No comments:
Post a Comment