`sin(2x)sin(x)=cos(x) ,0<=x<=2pi`
`sin(2x)sin(x)-cos(x)=0`
`=2sin(x)cos(x)sin(x)-cos(x)=0`
`=cos(x)(2sin^2(x)-1)=0`
`=cos(x)(sqrt(2)sin(x)-1)(sqrt(2)sin(x)+1)=0`
solving each part separately,
`cos(x)=0 , (sqrt(2)sin(x)-1)=0 , (sqrt(2)sin(x)+1)=0`
General solutions for cos(x)=0 are,
`x=pi/2+2pin , x=(3pi)/2+2pin`
solutions for the range `0<=x<=2pi` are,
`x=pi/2 , x=(3pi/2)`
`(sqrt(2)sin(x)-1)=0`
`sin(x)=1/sqrt(2)`
General solutions are,
`x=pi/4+2pin , x=(3pi)/4+2pin`
solutions for the range `0<=x<=2pi` are,
`x=pi/4 , x=(3pi)/4`
`sqrt(2)sin(x)+1=0`
`sin(x)=-1/sqrt(2)`
General solutions are,
`x=(5pi)/4+2pin, x=(7pi)/4+2pin`
solutions for the range `0<=x<=2pi` are,
`x=(5pi)/4 , x=(7pi)/4`
Combine all the solutions,
`x=pi/2 ,x=(3pi)/2 , x=pi/4 , x=(3pi)/4 , x=(5pi/4) , x=(7pi)/4`
No comments:
Post a Comment