Thursday, May 5, 2016

`tan(2x) - 2cos(x) = 0` Find the exact solutions of the equation in the interval [0, 2pi).

`tan(2x)-2cos(x)=0, 0<=x<=2pi`


`tan(2x)-2cos(x)=0`


`sin(2x)/cos(2x)-2cos(x)=0`


`sin(2x)-2cos(2x)cos(x)=0`


`2sin(x)cos(x)-2cos(2x)cos(x)=0`


`2cos(x)(sin(x)-cos(2x))=0`


using the identity`cos(2x)=1-2sin^2(x),`


`2cos(x)(sin(x)-(1-2sin^2(x)))=0`


`2cos(x)(sin(x)-1+2sin^2(x))=0`


solving each part separately,


`cos(x)=0`


General solutions are,


`x=pi/2+2pin , x=(3pi)/2+2pin`


Solutions for the range `0<=x<=2pi`  are,


`x=pi/2 , x=(3pi)/2`


`2sin^2(x)+sin(x)-1=0`


Let sin(x)=y


`2y^2+y-1=0`


solve using the quadratic formula,


`y=(-1+-sqrt(1^2-4*2*(-1)))/(2*2)`


`y=-1,1/2`


substitute back y=sin(x)


`sin(x)=-1 , sin(x)=1/2`


For sin(x)=-1


General solutions are,


`x=(3pi)/2+2pin`


Solutions for the range `0<=x<=2pi`  are,


`x=(3pi)/2`


For sin(x)=1/2


General solutions are,


`x=pi/6+2pin , x=(5pi)/6+2pin`


solutions for the range `0<=x<=2pi`  are,


`x=pi/6 , (5pi)/6`


Combine all the solutions,


`x=pi/2 , (3pi)/2 , pi/6 , (5pi)/6`

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...