`cos(2x)-cos(x)=0 , 0<=x<=2pi`
using the identity `cos(2x)=2cos^2(x)-1`
`cos(2x)-cos(x)=0`
`2cos^2(x)-1-cos(x)=0`
Let cos(x)=y,
`2y^2-y-1=0`
solving using the quadratic formula,
`y=(1+-sqrt((-1)^2-4*2(-1)))/(2*2)`
`y=(1+-sqrt(9))/4=(1+-3)/4=1,-1/2`
`:. cos(x)=1, cos(x)=-1/2`
cos(x)=-1/2
General solutions are,
`x=(2pi)/3+2pin, x=(4pi)/3+2pin`
Solutions for the range `0<=x<=2pi` are,
`x=(2pi)/3 , x=(4pi)/3`
cos(x)=1
General solutions are,
`x=0+2pin`
solutions for the range `0<=x<=2pi` are,
`x=0 , x=2pi`
combine all the solutions ,
`x=0, x=2pi , x=(2pi)/3 , x=(4pi)/3`
No comments:
Post a Comment