`sin(u+v)=sin(u)cos(v)+cos(u)sin(v)`
`sin((3pi)/4+pi/6)=sin((3pi)/4)cos(pi/6)+cos((3pi)/4)sin(pi/6)`
`sin((3pi)/4+pi/6)=(sqrt2/2)(sqrt3/2)+(-sqrt2/2)(1/2)=(sqrt2/4)(sqrt3-1)`
`cos(u+v)=cos(u)cos(v)-sin(u)sin(v)`
`cos((3pi)/4+pi/6)=cos((3pi)/4)cos(pi/6)-sin((3pi)/4)sin(pi/6)`
`cos((3pi)/4+pi/6)=(-sqrt2/2)(sqrt3/2)-(sqrt2/2)(1/2)=(-sqrt2/4)(sqrt3+1)`
`tan(u+v)=(tan(u)+tan(v))/(1-tan(u)tan(v))`
`tan((3pi)/4+pi/6)=(tan((3pi)/4)+tan(pi/6))/(1-tan((3pi)/4)tan(pi/6))=(-1+(sqrt3/3))/(1-(-1)(sqrt3/3))=(-3+sqrt3)/(3+sqrt3)`
The rationalized answer is `-2+sqrt3.`
No comments:
Post a Comment