You need to find the values of sine and cosine of `-pi/12` , using the formulas `sin(a-b) = sin a*cos b - sin b*cos a` and `cos(a-b) = cos a*cos b + sin a*sin b` , such that:
`sin(-pi/12) = sin(pi/6 - pi/4) = sin(pi/6)cos(pi/4) - sin(pi/4)cos(pi/6)`
`sin(-pi/12) = 1/2*sqrt2/2 - sqrt2/2*sqrt3/2`
`sin(-pi/12) =sqrt2/2*(1-sqrt3)/2`
`cos(-pi/12) = cos(pi/6 - pi/4) = cos(pi/6)cos(pi/4) + sin(pi/4)sin(pi/6)`
`cos(-pi/12) = sqrt3/2*sqrt2/2 + sqrt2/2*1/2`
`cos(-pi/12) = sqrt2/2*(1+sqrt3)/2`
You need to evaluate tangent function such that:
`tan(-pi/12) = (sin(-pi/12) )/(cos(-pi/12) )`
`tan(-pi/12) = (1-sqrt3)/(1+sqrt3)`
`tan(-pi/12) = -((1-sqrt3)^2)/2`
Hence, evaluating the values of the functions yields `sin(-pi/12) =sqrt2/2*(1-sqrt3)/2, cos(-pi/12) = sqrt2/2*(1+sqrt3)/2, tan(-pi/12) = -((1-sqrt3)^2)/2.`
No comments:
Post a Comment