`sin((13pi)/12)=sin(pi/2+pi/3+pi/4)`
As we know that `sin(pi/2+theta)=cos(theta)`
`:.sin((13pi)/12)=cos(pi/3+pi/4)`
Now use the identity `cos(x+y)=cos(x)cos(y)-sin(x)sin(y)`
`sin((13pi)/12)=cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)`
`sin((13pi)/12)=((1/2)(1/sqrt(2))-((sqrt(3)/2)(1/sqrt(2)))`
`sin((13pi)/12)=(1-sqrt(3))/(2sqrt(2))`
`sin((13pi)/12)=(sqrt(2)-sqrt(6))/4`
`cos((13pi)/12)=cos(pi/2+pi/3+pi/4)`
We know that `cos(pi/2+theta)=-sin(theta)`
`:.cos((13pi)/12)=-sin(pi/3+pi/4)`
using identity `sin(x+y)=sin(x)cos(y)+cos(x)sin(y)`
`cos((13pi)/12)=-(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))`
`=-(sqrt(3)/2*1/sqrt(2)+1/2*1/sqrt(2))`
`=-(sqrt(3)+1)/(2sqrt(2))`
`=-(sqrt(6)+sqrt(2))/4`
`tan((13pi)/12)=sin((13pi)/12)/cos((13pi)/12)`
plug in the values evaluated above,
`tan((13pi)/12)=((sqrt(2)-sqrt(6))/4)/(-(sqrt(6)+sqrt(2))/4)`
`=(sqrt(2)-sqrt(6))/(-(sqrt(6)+sqrt(2)))`
rationalizing the denominator,
`=((sqrt(2)-sqrt(6))(sqrt(6)-sqrt(2)))/(-(6-2))`
`=(sqrt(12)-2-6+sqrt(12))/(-4)`
`=(2sqrt(12)-8)/(-4)`
`=(2*2sqrt(3)-8)/(-4)`
`=2-sqrt(3)`
No comments:
Post a Comment