Monday, April 23, 2012

`-(13pi)/12` Find the exact values of the sine, cosine, and tangent of the angle.

`sin((-13pi)/12)`


using the property sin(-x)=-sin(x),


`sin((-13pi)/12)=-sin((13pi)/12)`


`=-sin(pi/2+pi/3+pi/4)`


Now using sin(pi/2+x)=cos(x),


`=-cos(pi/3+pi/4)`


`=-(cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4))`


`=-(1/2*1/sqrt(2)-sqrt(3)/2*1/sqrt(2))`


`=(sqrt(3)-1)/(2sqrt(2))`


rationalizing the denominator,


`=(sqrt(2)(sqrt(3)-1))/4`


`cos((-13pi)/12)`


using the property cos(-x)=cos(x),


`cos((-13pi)/12)=cos((13pi)/12)`


`cos((13pi)/12)=cos(pi/2+pi/3+pi/4)`


now using cos(pi/2+x)=-sin(x),


`=-sin(pi/3+pi/4)`


`=-(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))`


`=-(sqrt(3)/2*1/sqrt(2)+1/2*1/sqrt(2))`


`=(-(sqrt(3)+1))/(2sqrt(2))` 


rationalizing the denominator,


`=(-sqrt(2)(sqrt(3)+1))/4`  


`tan((-13pi)/12)=sin((-13pi)/12)/cos((-13pi)/12)`


plug in the values of `sin((-13pi)/12),cos((-13pi)/12)` obtained above,


`=((sqrt(2)(sqrt(3)-1))/4)/((-sqrt(2)(sqrt(3)+1))/4)`


`=-(sqrt(3)-1)/(sqrt(3)+1)` 


rationalizing the denominator,


`=-((sqrt(3)-1)(sqrt(3)-1))/((sqrt(3)+1)(sqrt(3)-1))`


`=-(3+1-2sqrt(3))/2`


`=-(4-2sqrt(3))/2`


`=sqrt(3)-2`

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...