`sin((-13pi)/12)`
using the property sin(-x)=-sin(x),
`sin((-13pi)/12)=-sin((13pi)/12)`
`=-sin(pi/2+pi/3+pi/4)`
Now using sin(pi/2+x)=cos(x),
`=-cos(pi/3+pi/4)`
`=-(cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4))`
`=-(1/2*1/sqrt(2)-sqrt(3)/2*1/sqrt(2))`
`=(sqrt(3)-1)/(2sqrt(2))`
rationalizing the denominator,
`=(sqrt(2)(sqrt(3)-1))/4`
`cos((-13pi)/12)`
using the property cos(-x)=cos(x),
`cos((-13pi)/12)=cos((13pi)/12)`
`cos((13pi)/12)=cos(pi/2+pi/3+pi/4)`
now using cos(pi/2+x)=-sin(x),
`=-sin(pi/3+pi/4)`
`=-(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))`
`=-(sqrt(3)/2*1/sqrt(2)+1/2*1/sqrt(2))`
`=(-(sqrt(3)+1))/(2sqrt(2))`
rationalizing the denominator,
`=(-sqrt(2)(sqrt(3)+1))/4`
`tan((-13pi)/12)=sin((-13pi)/12)/cos((-13pi)/12)`
plug in the values of `sin((-13pi)/12),cos((-13pi)/12)` obtained above,
`=((sqrt(2)(sqrt(3)-1))/4)/((-sqrt(2)(sqrt(3)+1))/4)`
`=-(sqrt(3)-1)/(sqrt(3)+1)`
rationalizing the denominator,
`=-((sqrt(3)-1)(sqrt(3)-1))/((sqrt(3)+1)(sqrt(3)-1))`
`=-(3+1-2sqrt(3))/2`
`=-(4-2sqrt(3))/2`
`=sqrt(3)-2`
No comments:
Post a Comment