Given `sin(u)=-7/25 , cos(v)=-4/5`
using pythagorean identity,
`sin^2(u)+cos^2(u)=1`
`(-7/25)^2+cos^2(u)=1`
`cos^2(u)=1-49/625=(625-49)/625=576/625`
`cos(u)=sqrt(576/625)`
`cos(u)=+-24/25`
since u is in quadrant III,
`:.cos(u)=-24/25`
`sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-4/5)^2=1`
`sin^2(v)+16/25=1`
`sin^2(v)=1-16/25=(25-16)/25=9/25`
`sin(v)=sqrt(9/25)`
`sin(v)=+-3/5`
since v is in quadrant III,
`:.sin(v)=-3/5`
Now let's evaluate tan(u-v),
`tan(u-v)=sin(u-v)/cos(u-v)`
`=(sin(u)cos(v)-cos(u)sin(v))/(cos(u)cos(v)+sin(u)sin(v))`
`=((-7/25)(-4/5)-(-24/25)(-3/5))/((-24/25)(-4/5)+(-7/25)(-3/5))`
`=(28/125-72/125)/(96/125+21/125)`
`=(-44/125)/(117/125)`
`=-44/117`
No comments:
Post a Comment