Given `sin(u)=5/13 , cos(v)=-3/5`
using pythagorean identity,
`sin^2(u)+cos^2(u)=1`
`(5/13)^2+cos^2(u)=1`
`cos^2(u)=1-25/169=(169-25)/169=144/169`
`cos(u)=sqrt(144/169)`
`cos(u)=+-12/13`
since u is in quadrant II,
`:.cos(u)=-12/13`
`sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-3/5)^2=1`
`sin^2(v)+9/25=1`
`sin^2(v)=1-9/25=(25-9)/25=16/25`
`sin(v)=sqrt(16/25)`
`sin(v)=+-4/5`
since v is in quadrant II,
`:.sin(v)=4/5`
Now let's evaluate cot(u+v),
`cot(u+v)=cos(u+v)/sin(u+v)`
`=(cos(u)cos(v)-sin(u)sin(v))/(sin(u)cos(v)+cos(u)sin(v))`
`=((-12/13)(-3/5)-(5/13)(4/5))/((5/13)(-3/5)+(-12/13)(4/5))`
`=(36/65-20/65)/(-15/65-48/65)`
`=-16/63`
No comments:
Post a Comment