`sin(u)=-7/25`
using pythegorean identity,
`sin^2(u)+cos^2(u)=1`
`(-7/25)^2+cos^2(u)=1`
`cos^2(u)=1-49/625=(625-49)/625=576/625`
`cos(u)=sqrt(576/625)=+-24/25`
Since u is in quadrant III ,
`:.cos(u)=-24/25`
`sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-4/5)^2=1`
`sin^2(v)+16/25=1`
`sin^2(v)=1-16/25=(25-16)/25=9/25`
`sin(v)=sqrt(9/25)=+-3/5`
since v is in quadrant III,
`:.sin(v)=-3/5`
`cot(v-u)=cos(v-u)/sin(v-u)`
`cot(v-u)=(cos(v)cos(u)+sin(v)sin(u))/(sin(v)cos(u)-cos(v)sin(u))`
plug in the values of sin(v),sin(u),cos(v) and cos(u),
`cot(v-u)=((-4/5*-24/25+(-3/5)*-7/25))/((-3/5*-24/25-(-4/5)*-7/25))`
`cot(v-u)=(96/125+21/125)/(72/125-28/125)`
`cot(v-u)=(117/125)/(44/125)`
`cot(v-u)=117/44`
No comments:
Post a Comment