Thursday, April 9, 2015

`(7pi)/12 = pi/3 + pi/4` Find the exact values of the sine, cosine, and tangent of the angle.

You need to evaluate the sine of `(7pi)/12` , using the formula `sin(a+b) = sin a*cos b + sin b*cos a` such that:


`sin ((7pi)/12)= sin(pi/3 + pi/4) = sin (pi/3)*cos (pi/4) + sin (pi/4)*cos (pi/3)`


`sin ((7pi)/12)=(sqrt3)/2*(sqrt2)/2 + (sqrt2)/2*1/2`


`sin ((7pi)/12) = (sqrt2)/2*(sqrt3 + 1)/2`


You need to evaluate the cosine of `(7pi)/12` , using the formula `cos(a+b) = cos a*cos b - sin b*sin a` such that:


`cos ((7pi)/12) = cos (pi/3 + pi/4) = cos (pi/3)*cos (pi/4)- sin ( pi/4)*sin (pi/3)`


`cos ((7pi)/12)= 1/2*(sqrt2)/2 - (sqrt2)/2*(sqrt3)/2`


`cos((7pi)/12) = (sqrt2)/2*(1 - sqrt3)/2`


You need to evaluate the tangent of `(7pi)/12` , such that:


`tan ((7pi)/12) = (sin((7pi)/12))/(cos ((7pi)/12))`


`tan ((7pi)/12) = ((sqrt2)/2*(sqrt3 + 1)/2)/((sqrt2)/2*(1 - sqrt3)/2)`


`tan((7pi)/12) = (sqrt3 + 1)/(1 - sqrt3)`


`tan((7pi)/12) = ((sqrt3 + 1)*(1 + sqrt3))/(1 - 3)`


`tan((7pi)/12)) = -((sqrt3 + 1)^2)/2`


Hence, evaluating the sine, cosine and tangent of `tan(7pi)/12` , yields `sin((7pi)/12 ) = (sqrt2)/2*(sqrt3 + 1)/2, cos ( (7pi)/12 ) = (sqrt2)/2*(1 - sqrt3)/2, tan (7pi)/12 = -((sqrt3 + 1)^2)/2.`

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...