`cos(x+y)cos(x-y)=cos^2(x)-sin^2(y)`
We will use the following product formulas to prove the identity,
`2cosAcosB=cos(A+B)+cos(A-B)`
LHS=`cos(x+y)cos(x-y)`
`=(cos(x+y+x-y)+cos(x+y-(x-y)))/2`
`=(cos(2x)+cos(2y))/2`
Now we will use`cos(2theta)=2cos^2(theta)-1, cos(2theta)=1-2sin^2(theta)`
`=(2cos^2(x)-1+1-2sin^2(y))/2`
`=(2(cos^2(x)-sin^2(y)))/2`
`=cos^2(x)-sin^2(y)`
LHS=RHS , Hence proved.
No comments:
Post a Comment