Given `sin(u)=-7/25 , cos(v)=-4/5`
using pythagorean identity,
`sin^2(u)+cos^2(u)=1`
`(-7/25)^2+cos^2(u)=1`
`cos^2(u)=1-49/625`
`cos^2(u)=(625-49)/625=576/625`
`cos(u)=sqrt(576/625)`
`cos(u)=+-24/25`
since u is in Quadrant III ,
`cos(u)=-24/25`
Now `sin^2(v)+cos^2(v)=1`
`sin^2(v)+(-4/5)^2=1`
`sin^2(v)=1-16/25=9/25`
`sin(v)=sqrt(9/25)`
`sin(v)=+-3/5`
since v is in Quadrant III ,
`:.sin(v)=-3/5`
`csc(u-v)=1/(sin(u-v))`
`=1/(sin(u)cos(v)-cos(u)sin(v))`
`=1/((-7/25)(-4/5)-(-24/25)(-3/5))`
`=1/(28/125-72/125)`
`=-125/44`
No comments:
Post a Comment