You need to use the formula `cos(a-b) = cos a*cos b + sin a*sin b` and `sin(a+b) = sin a*cos b + sin b*cos a,` such that:
`cos (pi - theta) = cos pi*cos theta + sin pi*sin theta`
Since `cos pi = -1` and `sin pi = 0` , yields:
`cos (pi - theta) = - cos theta`
`sin(pi/2 + theta) = sin(pi/2)*cos theta + sin theta*cos(pi/2)`
Since `sin(pi/2) = 1` and `cos(pi/2) = 0,` yields:
`sin(pi/2 + theta) = cos theta`
Replacing `- cos theta` for `cos (pi - theta)` and `cos theta` for in `(pi/2 + theta)` yields:
`cos (pi - theta) + sin(pi/2 + theta) = - cos theta + cos theta = 0`
Hence, checking if the identity is valid yields that `cos (pi - theta) + sin(pi/2 + theta) = 0` holds.
No comments:
Post a Comment