Saturday, January 2, 2016

`105^@ = 60^@ + 45^@` Find the exact values of the sine, cosine, and tangent of the angle.

You need to evaluate the sine of `105^o` , using the formula `sin(a+b) = sin a*cos b + sin b*cos a` such that:


`sin(105^o) = sin(60^o + 45^o) = sin 60^o*cos 45^o + sin 45^o*cos 60^o`


`sin(105^o) = (sqrt3)/2*(sqrt2)/2 + (sqrt2)/2*1/2`


`sin(105^o) = (sqrt2)/2*(sqrt3 + 1)/2`


You need to evaluate the cosine of `105^o` , using the formula `cos(a+b) = cos a*cos b - sin b*sin a` such that:


`cos (105^o) = cos (60^o + 45^o) = cos 60^o*cos 45^o - sin 45^o*sin 60^o`


`cos (105^o) = 1/2*(sqrt2)/2 - (sqrt2)/2*(sqrt3)/2`


`cos (105^o) = (sqrt2)/2*(1 - sqrt3)/2`


You need to evaluate the tangent of `105^o` , such that:


`tan 105^o = (sin(105^o))/(cos (105^o))`


`tan 105^o = ((sqrt2)/2*(sqrt3 + 1)/2)/((sqrt2)/2*(1 - sqrt3)/2)`


`tan 105^o = (sqrt3 + 1)/(1 - sqrt3)`


`tan 105^o = ((sqrt3 + 1)*(1 + sqrt3)/(1 - 3)`


`tan 105^o = -((sqrt3 + 1)^2)/2`


Hence, evaluating the sine, cosine and tangent of `105^o` , yields `sin(105^o) = (sqrt2)/2*(sqrt3 + 1)/2, cos (105^o) = (sqrt2)/2*(1 - sqrt3)/2, tan 105^o = -((sqrt3 + 1)^2)/2.`

No comments:

Post a Comment

What was the device called which Faber had given Montag in order to communicate with him?

In Part Two "The Sieve and the Sand" of the novel Fahrenheit 451, Montag travels to Faber's house trying to find meaning in th...