`cos(x+pi/4)-cos(x-pi/4)=1 , 0<=x<=2pi`
We will use the following identity,
`cos(A+B)=cosAcosB-sinAsinB`
`cos(x+pi/4)-cos(x-pi/4)=1`
`rArr (cos(pi/4)cos(x)-sin(pi/4)sin(x))-(cos(pi/4)cos(x)+sin(pi/4)sin(x))=1`
`rArr(cos(x)-sin(x))/sqrt(2)-(cos(x)+sin(x))/sqrt(2)=1`
`rArr(cos(x)-sin(x)-cos(x)-sin(x))/sqrt(2)=1`
`rArr(-2sin(x))/sqrt(2)=1`
`rArrsin(x)=-1/sqrt(2)`
General solutions are ,
`x=(5pi)/4+2pin , x=(7pi)/4+2pin`
solutions for the range `0<=x<=2pi` are,
`x=(5pi)/4 , x=(7pi)/4`
No comments:
Post a Comment